Acceleration of a Fixed Point Algorithm for Fluid-structure Interaction Using Transpiration Conditions
نویسندگان
چکیده
In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the structure. Standard strategies for solving this non-linear problems, are fixed point based methods such as Block-Gauss-Seidel (BGS) iterations. Unfortunately, these methods are very CPU time consuming and usually show slow convergence. We propose a modified fixed-point algorithm which combines the standard BGS iterations with a transpiration formulation. Numerical experiments show the great improvement in computing time with respect to the standard BGS method. Mathematics Subject Classification. 65M60, 65B99, 74F10.
منابع مشابه
Modified fixed point algorithm in fluid–structure interaction
In this work, we address the numerical solution of some non-linear problems arising in the time discretization of fluid– structure interaction problems with fully implicit schemes. At each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the structure. We propose a modified fixed-point algorithm which combines the Bloc...
متن کاملPresenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems
A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...
متن کاملEFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER
Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...
متن کاملMULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II
In this paper, a procedure has been introduced to the multi-objective optimal design of semi-active tuned mass dampers (SATMDs) with variable stiffness for nonlinear structures considering soil-structure interaction under multiple earthquakes. Three bi-objective optimization problems have been defined by considering the mean of maximum inter-story drift as safety criterion of structural compone...
متن کاملFluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory
In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...
متن کامل